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Dynamics of solitary waves in the Zakharov model equations

B. Malomed,* D. Anderson, M. Lisak, and M. L. Quiroga-Teixeiro
Institute for Electromagnetic Field Theory, Chalmers University of Technology, Gothenburg, S-41296, Sweden
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Department of Plasma Physics, Umea˚ University, Umea˚, S-90187, Sweden

~Received 6 June 1996!

We analyze internal vibrations of a solitary wave in the generalized Zakharov system~including a direct
nonlinear self-interaction of the high-frequency field! by means of a variational approach. The application of
the variational approximation to this model turns out to be nontrivial, as one needs to renormalize the La-
grangian in order to avoid divergences. This is done with the use of two fundamental integrals of motion of the
model. We derive a Hamiltonian two-degrees-of-freedom dynamical system that governs internal vibrations of
the solitary wave. The eigenfrequencies of the small oscillations around the unperturbed solitary wave are
found explicitly, one of them lying inside the gap of the high-frequency subsystem, the other one being well
above the gap. Finite-amplitude oscillations are simulated numerically. It is shown that these oscillations
remain regular if the perturbation does not break the balance between the two integrals of motion, while in the
opposite case the oscillations are more irregular and may possibly become chaotic.@S1063-651X~97!01601-2#

PACS number~s!: 52.60.1h, 52.35.Kt
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I. INTRODUCTION

The Zakharov system of equations@1# ~ZS! is one of the
fundamental models governing dynamics of nonlinear wa
in one-dimensional systems. It describes, in a general fo
the interaction between high-frequency~hf! and low-
frequency ~lf ! waves. The physically most important e
ample involves the interaction between the Langmuir a
ion-acoustic waves in plasmas@1#. Other physical applica-
tions are also possible, for example, the interaction of hf
lf perturbations in the atmosphere@2#. In contrast with some
other fundamental one-dimensional nonlinear wave mod
the ZS is not integrable@3#, although it has a stable single
solitary-wave solution, which in the rest of this paper will b
referred to as asoliton. This solution plays a most importan
role in many applications. As usual, the existence of the s
ton is related to the modulational instability of the contin
ous wave in this model@4#.

Since the system is nonintegrable, the dynamics of
fundamental soliton is nontrivial even in the absence of
ditional perturbations. In early works@5#, the interaction of
the soliton with acoustic~lf ! wave packets was simulate
numerically. It was shown that the interaction may be ess
tially inelastic. A typical manifestation of the inelasticity
that an acoustic wave packet, colliding with the soliton, d
creases its energy by expelling a part of the quanta~plas-
mons! that are bound inside the soliton. Later, a perturbat
theory for the description of this interaction was develop
@6#. A perturbation analysis was presented for the nea
adiabatic case, when the ZS could be approximated b
perturbed nonlinear Schro¨dinger ~NLS! equation.

Recently, it was demonstrated that the interaction of
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soliton with a random acoustic field in the ZS gives rise
another effect, which is simpler and maybe even more
portant for applications than the inelastic interaction~which
in this case is the emission of radiation from the solit
induced by the random acoustic field!, viz., a random walk of
the soliton@7#!. Collisions between solitons are also inelas
in the ZS. The collisions were simulated in detail in Ref.@8#
within the framework of the generalized ZS, which includ
a direct nonlinear self-interaction in the hf subsystem a
also two different acoustic fields with different sound velo
ties. It was demonstrated that the collisions not only are
companied by emission of radiation, but also may result i
fusion of the two solitons into a ‘‘breather,’’ i.e., a sing
soliton with strong internal vibrations.

Another fundamental manifestation of the nonintegrab
ity of the ZS is the possibility of the existence of a dynamic
chaos. Recently, spatiotemporal chaos was discovered in
rect simulations of the ZS with periodic boundary condito
@9#. A transition to chaotic states from regular quasiperio
regimes was also considered@9#.

There is still another fundamental dynamical process t
so far has not been considered in the ZS, which will
addressed in the present work, namely, internal vibration
the soliton. Internal vibrations are observed in numeri
simulations of solitons in many integrable~as well as in non-
integrable! models. The vibrations are easily excited, both
nonintegrable and integrable systems, by a deviation of
initial pulse from the exact soliton and, in nonintegrab
models, as a result of collisions between the solitons. A
was demonstrated in Ref.@8#, collisions in the generalized
ZS always give rise to a strong excitation of the soliton
internal oscillations, even if the collision does not lead
fusion into a single soliton.

In general, the vibrations are gradually damped by rad
tive losses. However, in many cases the rate of emissio
radiation turns out to be very small, so that the vibratio
may be fairly persistent. They were first identified as a d

ol
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55 963DYNAMICS OF SOLITARY WAVES IN THE ZAKHAROV . . .
tinct dynamical phenomenon in numerical simulations of
usual NLS equation@10#. Then, an effective analytical ap
proximation for the description of the soliton internal vibr
tions was elaborated@11#. This approximation is based o
the variational principle. One assumes that the soliton ke
a fixed functional form~the so-called ansatz!, but that its
parameters are allowed to vary in time. Inserting the ans
into the Lagrangian of the underlying model, one can exp
itly integrate it over the spatial variable. Thus one arrives
aneffectiveLagrangian for the free parameters of the ansa
This, in turn, leads to a finite-dimensional dynamical syste
which furnishes the simplified description of the dynamics
the system.

Of course, the accuracy of this approximation must
monitored by comparison with direct simulations, as t
technique is approximate~first of all, the emission of radia
tion is completely ignored!. Nevertheless, this simple ap
proximation yields surprisingly accurate results even in
ally complicated problems, such as, e.g., soliton propaga
in a nonlinear optical fiber with a periodically modulate
dispersion@12,13#. The variational approximation has pre
dicted that the soliton will be destroyed suddenly if t
modulation depth exceeds a certain critical value~which is
actually rather small! @12#. The destruction was expected
the form of an unlimited growth of the width of the soliton
i.e., its direct decay into dispersive radiation~it should be
noted that, in this form, the variational approach can som
times indirectly describe an essentially radiative process!. In
the case when the modulation depth is smaller than the c
cal value, the soliton was predicted to exist stably in the fo
of a breather, i.e., with persistent internal oscillations. Late
detailed simulations have confirmed that the actual beha
of the soliton is quite close to this prediction@13#. An essen-
tial difference was, however, that the actual destruction m
was not the decay into radiation, but splitting of the solit
into two secondary ones, which was indeed accompanie
a burst of radiation. The simplest variational approximat
employed in Ref.@8# could not predict this particular de
struction mode simply because the underlying ansatz
based on a single soliton. Nevertheless, the actual valu
the critical depth of the modulation at which the destruct
takes place differs by not more than 15% from the predic
value. Many other features predicted by the variational
proximation were also confirmed by the simulations, for
stance, the important fact that the critical modulation de
very weakly depends upon the soliton energy and that
surviving soliton is a vibrating breather.

The objective of the present work is to analyze inter
oscillations of the soliton in the Zakharov system by mea
of the variational approximation. Besides its obvious imp
tance for applications, this problem also turns out to be q
interesting in itself, as one must essentially modify so
elements of the variational technique in order to be able
apply it to ZS. The main technical difficulty that we encou
ter when applying the technique to the soliton in the ZS
the divergence of a ‘‘naively defined’’ Lagrangian in th
model. We demonstrate that one can resolve this problem
directly using two fundamental integrals of motion of the Z

The variational approach will be described, with nec
sary technical details, in Sec. II. In Sec. III, we present a
lytical results for small internal vibrations of the soliton.
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the linear approximation we find two different eigenfreque
cies of these vibrations. The eigenfrequencies remain alw
real, which implies that the soliton is always stable. This is
full agreement with the results of numerical simulations
the ZS.

It is relevant to notice here that eigenmodes of the sm
oscillation predicted by the variational approximation, ma
generally speaking, correspond either to the ‘‘quasimode
in the exact equations, which exist persistently but gradu
decay into radiation because they directly couple to the c
tinuous spectrum of the system~the quasimode of the NLS
soliton is a well-known example@11#!, or to a genuine dis-
crete eigenmode in the linear spectrum of the small vib
tions around the soliton. The latter eigenmode must bel
to a gap of the continuous spectrum, provided that such a
exists. In the case of the ZS, genuine eigenmodes are
possible because the lf continuum has no gap.

In Sec. IV, we display the results of numerical simul
tions of finite-amplitude oscillations governed by the var
tional equations. The amplitude of the oscillations is alwa
limited: above a certain maximum amplitude, the solit
width, instead of oscillating, will start to grow, which im
plies decay into radiation@12#. Below the critical value, the
character of the oscillations depends strongly upon the
ues of the integrals of motion of the excited soliton. The
has, besides the Hamiltonian and momentum, two additio
integrals of motion: the hf ‘‘number of quanta’’ and the
‘‘mass.’’ In a balanced state, in which these two integrals
motion are related the same way as for the unperturbed
ton ~i.e., they are simply equal!, the simulations demonstrat
that the oscillations are always periodic or quasiperiodic.
an unbalanced state, when this relation between the two
tegrals is broken, the motion becomes more complicated
possibly also chaotic; cf.@9#.

II. THE VARIATIONAL APPROXIMATION

In this work, we consider the generalized Zakharov eq
tions for the complex envelopeu(x,t) of the hf wave and for
the real lf fieldn(x,t). Thus

iut1uxx22luuu2u12nu5 0, ~1!

ntt2nxx52~ uuu2!xx , ~2!

where the sound velocity, as well as the coupling constan
Eq. ~2!, has been normalized to unity. The cubic term in E
~1! describes direct nonlinear self-interaction in the hf su
system. In plasma physics, such a term can arise withl,0
due to relativistic effects~the velocity dependence of th
electron mass@14#! and it then corresponds to a self-focusin
effect. In the analysis following below we will consider
coefficientl with either sign.

It is easy to see that Eqs.~1! and ~2! have a family of
exact soliton solutions of the form

u~x,t !5~12l!21/2hsech~hx!eih
2t, ~3!

n~x,t !5~12l!21h2sech2~hx!, ~4!

whereh is an arbitrary amplitude of the soliton~in this work,
we consider only quiescent solitons, although an exact s
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964 55B. MALOMED et al.
tion for moving ones is well known too!. To introduce the
Lagrangian of the ZS, one has to define the so-called po
tial n(x,t) from

n[nxx . ~5!

In terms of this potential, the Lagrangian density correspo
ing to Eqs.~1! and ~2! takes the form

L5
1

2
i ~u* ut2uut* !2uuxu22luuu412nxxuuu21nxt

2 2nxx
2 .

~6!

The full LagrangianL is defined as the integral of the La
grangian density

L5E
2`

1`

Ldx. ~7!

It is straightforward to see that Eqs.~1! and~2! have four
integrals of motion: the momentum~which will not be used
in this work!, the Hamiltonian

H5E
2`

1`

~ uuxu21luuu422nxxuuu22nxt
2 1nxx

2 !dx

~which, as a matter of fact, will not be explictly used eithe!,
the number of hf quanta

W5~1/Ap!E
2`

1`

uuu2dx, ~8!

and the lf mass

C5~1/Ap!E
2`

1`

ndx. ~9!

The multiplier 1/Ap in these definitions will render the us
of the integrals~8! and~9! more convenient in what follows
below.

A crucial role in the success or failure of the variation
approximation is played by the choice of the ansatz. In t
work, we are dealing with the two-component model~1! and
~2!, in which we must allow the two components of the so
ton to have different widths. As it is well known, the on
analytically tractable ansatz that admits this property is ba
on a Gaussian shape. Accordingly, we adopt the follow
ansatz for the two-component soliton:

u~x,t !5AexpS 2
x2

2a2
1 if1 ikx2D , ~10!

n~x,t !5BexpS 2
x2

b2D . ~11!

HereA andB are the amplitudes of the two componentsa
andb are their widths~notice the difference in defining th
widths for the two components!, f is the phase of the h
envelope, andk is the so-called chirp, which is necessary
provide a balance between the different dynamical variab
n-

-

l
is

ed
g

s

@11#. All the six free parameters in the ansatz~10! and ~11!
are real and they are all assumed to be functions of t
only.

The next step, before proceeding to the effective Lagra
ian, is to calculate the integrals of motion~8! and~9! for the
ansatz~10! and ~11!. This yields

W5A2a, C5Bb. ~12!

In the usual application of the variational approach to
description of internal vibrations of the soliton@11#, first the
ansatz is inserted into the Lagrangian density and then
conservation laws are obtained among other equations
erated by variation of the resultant effective Lagrangian.
all the cases, the conserved quantities are obtained exac
the same form that is produced directly by insertion of t
ansatz into the exact integral expressions, cf. Eqs.~12!.
Moreover, it is also known that the eventual variation
equations take the same form if, from the very beginni
one treats the combinations of the ansatz parameters
constitute the conserved quantities, e.g.,~12!, as arbitrary
constants, thus eliminating some of the variational para
eters. This trick significantly simplifies the derivation of th
final dynamical equations and will play a crucial role in th
present case.

Because the Lagrangian density~6! is written in terms of
the potentialn instead of the physical fieldn, one needs to
know the functionn(x) corresponding to the ansatz~11!. It
is straightforward to see that direct calculation of the effe
tive Lagrangian would give rise to a divergence produced
the termnxt

2 in the Lagrangian density~6!. A way to circum-
vent the divergence is to use the conserved quantities in
der to eliminate the amplitudesA andB, i.e.,A2[W/a and
B[C/b.

For the derivativenxt that enters the Lagrangian, we ob
tain the following expression from Eqs.~5! and ~11!:

nxt5Cb22ḃE
0

x

~2y2/b221!e2y2/b2dy ~13!

where the overdot denotes the time derivative. It follo
from Eq. ~13! that nxt→0 at x→6`, which will now pro-
vide for convergence of the effective Lagrangian.

Finally, the effective Lagrangian takes the form

p21/2L52Wḟ2Wa2k̇2
1

2
W~4k2a21a22!2

1

A2
lW2a21

12CW~a21b2!21/21IC2bḃ22
1

A2
C2b21, ~14!

whereI is a numerical coefficient given by

I5
2

Ap
E

2`

1`

dxE
0

x

dyE
0

x

dz~2y221!~2z221!e2~y21z2!

' 0.1567.

A full system of equations for the variational parameters c
immediately be obtained by varying this Lagrangian. Fir
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55 965DYNAMICS OF SOLITARY WAVES IN THE ZAKHAROV . . .
the variation inf reproduces the result thatW is a constant.
Next, the variation ink yields the usual expression for th
chirp

k5ȧ/2a. ~15!

Eliminating k by means of this relation, the equations d
scribing the evolution ofa andb can be finally written in the
form

ä5a231
1

A2
lWa2222Ca~a21b4/3!23/2. ~16!

8IC

9W
b̈52

4

3
b1/3~a21b4/3!23/21

A2C
3W

b25/3, ~17!

whereb[b3/2. These equations are analogous to those
particle motion with two degrees of freedoma andb and an
anisotropic mass with the components

ma51, mb58IC2/9W ~18!

in the external potential

U~a,b!5
1

2
a221

1

A2
lWa2122C~a21b4/3!21/2

1
1

A2
C2W21b22/3. ~19!

A full two-dimensional picture showing the shape of t
potential~19! turns out to be not very useful, and instead F
1 shows only a set of cross sections of the potential
different values ofl. These cross sections are taken for co
stantb and are going through the fixed point of Eqs.~16! and

FIG. 1. Set of cross sections of the effective potentialU(a,b),
defined by Eq. ~19!, for different values of l
(l521,20.5,0,0.5,0.999). The sections are taken atb5b0, where
b0 corresponds to the fixed point~20!; W5C51.
-

r

.
r
-

~17!. In the next section, we will consider small oscillation
around the fixed point~FP! of the dynamical system~16! and
~17!.

III. SMALL OSCILLATIONS

A FP of the dynamical system governing the vibrations
the soliton corresponds to an unperturbed soliton. A straig
forward calculation shows that the exact solution~3! and~4!
corresponds to equal values of the integrals of motion~8!
and ~9!. Therefore, we will be looking for a FP of the dy
namical system~16! and ~17! imposing the same constrain
C5W. An elementary consideration shows that in this ca
there exists a single physical FP at

a0
215b0

22/35
12l

A2
W. ~20!

Notice that, in terms of the original parameterb, this FP has
a05b0, i.e., in accordance with the exact solution~3! and
~4!, it predicts equal widths of both components of the u
perturbed soliton. It is also noteworthy that both the ex
solution and the FP~20! have the same existence conditio
l,1.

The next natural step is to consider small oscillations i
vicinity of the FP. Linearization of Eqs.~16! and~17! around
the FP leads to the following equation for the eigenfreque
v of the small oscillations:

Fa04v22
522l

2~12l!GFa04v22
5

4A2I G2
9

8A2I ~12l!
5 0.

~21!

One can readily check that both rootsv1,2
2 of the biquadratic

equation~21! satisfy the stability conditionv2.0 at all val-
ues ofl at which the FP exists.

It is interesting to compare the eigenfrequencies of
small oscillations with the frequencyv0[2ḟ of the unper-
turbed soliton, see Eq.~10!. Within the framework of the
variational approach, this frequency can be obtained by va
ing the Lagrangian~14! with respect to the parameterW with
all the other parameters taken at the FP. This yields

v052
1

2
a0

221A2~12l!Wa0
21[2

3

4
~12l!2W2.

~22!

The quantitiesv1,2
2 given by Eq.~21! andv0

2 given by Eq.
~22! are shown, as functions of the parameterl, in Fig. 2.

An interesting issue is the radiative damping of the int
nal vibrations of the perturbed soliton. In the ZS, the solit
can emit radiation through both the hf and lf channels. A
though we will not consider in this work the emission pro
lem in detail, some comments are in order. In the lf chann
the emitted waves have the acoustic dispersion law with
gap. Therefore, shape vibrations of the soliton with any va
of the frequency directly give rise to emission of the
~acoustic! waves. Contrary to this, it is well known@15# that
a perturbation of the soliton with a frequencyv directly
induces emission of the hf waves only ifv2.v0

2, i.e., if the
perturbation frequency is above the effective gap induced
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966 55B. MALOMED et al.
the internal frequencyv0 of the unperturbed soliton. Look
ing at Fig. 2, one concludes that one of the eigenfrequen
of the perturbed soliton lies inside the hf gap, while anot
is far above it.

IV. LARGE-AMPLITUDE OSCILLATIONS

As it was discussed in the Introduction, in many cases
variational approximation furnishes quite an accurate
scription of strong perturbations of a soliton. In this sectio
we will consider finite-amplitude shape vibrations of t
soliton in ZS. The consideration will be based on numeri
simulations of the dynamical system~16! and ~17!. A com-
parison with direct simulations of the partial differenti
equations~1! and ~2! is deferred to another work.

In Fig. 3, we display a series of plots presenting typi
dynamical trajectories of the system~16! and ~17! with
l50 and with the balanced integrals of motion, i.
W5C. In all the cases, the initial point is taken at the FP, b
the system is given a certain initial ‘‘velocity’’ in the direc
tion of a, viz., v0[ȧ(t50). Actually, this velocity repre-
sents an initial chirp of the soliton according to Eq.~15!. As
it is evident from Fig. 3, for all values of the initial velocit
v0 such thatuv0u,vcrit , wherevcrit is the critical initial ve-
locity at which the particle is kicked out of the potential we
~i.e., the soliton is expected to decay into radiation@12#!, the
oscillations remain quite regular: periodic or quasiperiodic
is clearly seen that the frequency of the oscillations stron
decreases with increasing amplitude. This anharmonism
direct consequence of the shape of the effective poten
~19! ~see Fig. 1!.

In Fig. 4, a similar series of plots is shown forl520.3
and 0.3. In these cases, there is an additional initial per
bation besides the velocity, namely, the initial point is tak
at the FP corresponding not to the actual value ofl but to
l50. The oscillations remain regular in this case too.

FIG. 2. Squared eigenfrequencies of small-amplitude osc
tions around the fixed point~20!, according to Eq.~21! ~the dash-
dotted and dashed lines!, and the squared frequency~22! of the
unperturbed soliton~the solid line!.
es
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e
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l

l
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We note that the condition determining the critical velo
tites in thea andb directions, at which the particle escap
the potential well, can be obtained from the conservation
the Hamiltonian of Eqs.~16! and ~17!,

H5
1

2
maȧ

21
1

2
mbḃ21U~a,b!, ~23!

where the effective masses are given by Eq.~18!. Evaluating
the Hamiltonian for the case when the particle barely esca
(ȧ→0,ḃ→0 asa→`,b→`), we obtain the relation

-

FIG. 3. Set of typical dynamical trajectories of the system~16!
and~17! with l50 andW5C51, for different values of the initial

velocity v0[ȧ(t50): ~a! v0520.1 and~b! v0520.4.
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1

2
mavcrit

2 1
1

2
mbucrit

2 52U~a0 ,b0!, ~24!

wherevcrit and ucrit are the critical velocities in thea and
b directions for the dynamical trajectory starting at the
point (a0 ,b0). In particular, takingucrit50 and considering,
for simplicity, the balanced case withW5C we find

vcrit5
12l

A2
W5a0

21 . ~25!

FIG. 4. Set of dynamical trajectories of the system~14! and~15!
for l50.3 and l520.3 and differentv0 with W5C51; ~a!
l520.3,v050.8; ~b! l50.3,v050.2. The initial point is taken as
the position corresponding to the fixed point atl50.
It is also interesting to consider the oscillations for imb
anced integrals of motion, i.e., forWÞC. As it was dis-
cussed in Sec. III, exact solitons always haveW5C. There-
fore, one may expect that, if the initial state is imbalanc
the balance will be gradually restored through emission
radiation. Nevertheless, anticipating that radiation losses
weak, one may expect that the imbalanced perturbation
stay trapped in the soliton for a long time, which makes
meaningful to simulate Eqs.~16! and~17! atWÞC. A typi-
cal set of trajectories is shown~for W52,C51, andl50)
in Fig. 5. In this case, one can easily see that an increas
the initial velocity transforms the regular oscillations@Figs.
5~a!# into seemingly irregular ones@Fig. 5~b!#, before the
particle is kicked out of the potential well.

On the basis of these and many other runs of the sim

FIG. 5. Dynamical trajectories corresponding to a perturbat
with an imbalance in the integrals of motion:W52,C51, at
l50, and the energy~a! H520.5 and~b! H520.1.
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968 55B. MALOMED et al.
tions, we conclude that finite-amplitude vibrations of the p
turbed solitons remain regular if its two integrals of motio
the number of hf quanta and the lf mass, are balanced,
that a sufficiently strong perturbation that introduces an
balance between them renders the vibrations irregular
possibily chaotic.

V. CONCLUSION

In this work, we have presented a detailed analysis of
internal vibrations of the soliton in a fundamental nonin
grable model, the generalized Zakharov system, which
universal model of interaction between high- and lo
frequency waves in one dimension. The analysis is base
the variational approach. Adaptation of the variational a
proach to this model is in itself a nontrivial technical pro
lem, as it is necessary to circumvent a divergence that
encounters when applying the variational technique in
traditional way. Eventually, a Hamiltonian system with tw
degrees of freedom has been derived to govern the vibrat
of the soliton. The eigenfrequencies of the small oscillatio
.

A
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nd

e
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around the fixed point~which corresponds to the unperturbe
soliton! have been found. They are always real, i.e., ther
no instability of the soliton. One eigenfrequency lies insi
the gap of the high-frequency subsystem, while anothe
well above the gap.

Large-amplitude oscillations have been simulated num
cally. It was demonstrated that, if the perturbed soliton ke
balance between the values of the two fundamental integ
of motion ~the number of high-frequency quanta! and low-
frequency mass! its vibrations remain regular~periodic or
quasiperiodic!. However, a perturbation introducing an im
balance between the two conserved quantities renders
vibrations irregular and possibly chaotic.
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