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Dynamics of solitary waves in the Zakharov model equations
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We analyze internal vibrations of a solitary wave in the generalized Zakharov syistelonding a direct
nonlinear self-interaction of the high-frequency fielly means of a variational approach. The application of
the variational approximation to this model turns out to be nontrivial, as one needs to renormalize the La-
grangian in order to avoid divergences. This is done with the use of two fundamental integrals of motion of the
model. We derive a Hamiltonian two-degrees-of-freedom dynamical system that governs internal vibrations of
the solitary wave. The eigenfrequencies of the small oscillations around the unperturbed solitary wave are
found explicitly, one of them lying inside the gap of the high-frequency subsystem, the other one being well
above the gap. Finite-amplitude oscillations are simulated numerically. It is shown that these oscillations
remain regular if the perturbation does not break the balance between the two integrals of motion, while in the
opposite case the oscillations are more irregular and may possibly become di&i#3-651X97)01601-3

PACS numbgs): 52.60+h, 52.35.Kt

[. INTRODUCTION soliton with a random acoustic field in the ZS gives rise to
another effect, which is simpler and maybe even more im-
The Zakharov system of equatiofg (ZS) is one of the  portant for applications than the inelastic interactiarmich
fundamental models governing dynamics of nonlinear wavef this case is the emission of radiation from the soliton
in one-dimensional systems. It describes, in a general formnduced by the random acoustic figldiz., a random walk of
the interaction between high-frequencihf) and low- the soliton[7]). Collisions between solitons are also inelastic
frequency (If) waves. The physically most important ex- in the ZS. The collisions were simulated in detail in &
ample involves the interaction between the Langmuir andvithin the framework of the generalized ZS, which included
ion-acoustic waves in plasmés]. Other physical applica- a direct nonlinear self-interaction in the hf subsystem and
tions are also possible, for example, the interaction of hf anclso two different acoustic fields with different sound veloci-
If perturbations in the atmosphel2]. In contrast with some ties. It was demonstrated that the collisions not only are ac-
other fundamental one-dimensional nonlinear wave models;ompanied by emission of radiation, but also may result in a
the ZS is not integrablg3], although it has a stable single- fusion of the two solitons into a “breather,” i.e., a single
solitary-wave solution, which in the rest of this paper will be soliton with strong internal vibrations.
referred to as aoliton This solution plays a most important ~ Another fundamental manifestation of the nonintegrabil-
role in many applications. As usual, the existence of the soliity of the ZS is the possibility of the existence of a dynamical
ton is related to the modulational instability of the continu- chaos. Recently, spatiotemporal chaos was discovered in di-
ous wave in this moddH]. rect simulations of the ZS with periodic boundary conditons
Since the system is nonintegrable, the dynamics of th§9]. A transition to chaotic states from regular quasiperiodic
fundamental soliton is nontrivial even in the absence of adregimes was also considerg®].
ditional perturbations. In early wor$], the interaction of There is still another fundamental dynamical process that
the soliton with acoustiglf) wave packets was simulated so far has not been considered in the ZS, which will be
numerically. It was shown that the interaction may be essenaddressed in the present work, namely, internal vibrations of
tially inelastic. A typical manifestation of the inelasticity is the soliton. Internal vibrations are observed in numerical
that an acoustic wave packet, colliding with the soliton, de-simulations of solitons in many integrakas well as in non-
creases its energy by expelling a part of the qudptas- integrablé models. The vibrations are easily excited, both in
mons that are bound inside the soliton. Later, a perturbatiomonintegrable and integrable systems, by a deviation of the
theory for the description of this interaction was developednitial pulse from the exact soliton and, in nonintegrable
[6]. A perturbation analysis was presented for the nearlynodels, as a result of collisions between the solitons. As it
adiabatic case, when the ZS could be approximated by was demonstrated in Ref8], collisions in the generalized
perturbed nonlinear Schdnger (NLS) equation. ZS always give rise to a strong excitation of the soliton’s
Recently, it was demonstrated that the interaction of thénternal oscillations, even if the collision does not lead to
fusion into a single soliton.
In general, the vibrations are gradually damped by radia-
*Permanent address: Department of Applied Mathematics, Schodive losses. However, in many cases the rate of emission of
of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, radiation turns out to be very small, so that the vibrations
Israel. Electronic address: malomed@Ieo.math.tau.ac.il may be fairly persistent. They were first identified as a dis-
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tinct dynamical phenomenon in numerical simulations of thethe linear approximation we find two different eigenfrequen-
usual NLS equation10]. Then, an effective analytical ap- cies of these vibrations. The eigenfrequencies remain always
proximation for the description of the soliton internal vibra- real, which implies that the soliton is always stable. This is in
tions was elaboratefil1]. This approximation is based on full agreement with the results of numerical simulations of
the variational principle. One assumes that the soliton keepde ZS.

a fixed functional form(the so-called ansatzbut that its It is relevant to notice here that eigenmodes of the small
parameters are allowed to vary in time. Inserting the ansat@Scillation predicted by the variational approximation, may,
into the Lagrangian of the underlying model, one can explic:9enerally speaking, correspond either to the “quasimodes”

itly integrate it over the spatial variable. Thus one arrives ail the exact equations, which exist persistently but gradually

aneffectiveLagrangian for the free parameters of the ansatzd€c@Y into radiation because they directly couple to the con-

This, in turn, leads to a finite-dimensional dynamical systemtinuous spectrum of the systefthe quasimode of the NLS

which furnishes the simplified description of the dynamics ofSOIiton _is a well—known egampléll]), or to a genuine ‘“?'
the system. crete eigenmode in the linear spectrum of the small vibra-

Of course, the accuracy of this approximation must pdions around the soliton. The latter eigenmode must belong

monitored by comparison with direct simulations, as thel© @ 9ap of the continuous spectrum, provided that such a gap

technique is approximatéirst of all, the emission of radia- emst_sbl Inbthe casehoflfthe Z.S' gen;}une eigenmodes are not
tion is completely ignored Nevertheless, this simple ap- poTS|Se elt\:/ause td_e | conrt]muuml as PO 9ap.. | simul
proximation yields surprisingly accurate results even in re-, n Sec. IV, we display the resuits of numerical simula-
ally complicated problems, such as, e.g., soliton propagatioHonS of fmng-amphtude os_C|IIat|ons goverrlled'by the varia-
in a nonlinear optical fiber with a periodically modulated t]onal equations. The arnphtudg of the osqllatlons IS always
dispersion[12,13. The variational approximation has pre- I'r_'gtﬁd'_ abovc? "’]‘c cert_ﬁun_ max'fﬁ“m amplitude, tr;? sqllton
dicted that the soliton will be destroyed suddenly if theWidth, instead of oscillating, will start to grow, which im-
modulation depth exceeds a certain critical valwich is plies decay into radiatiofl2]. Below the critical value, the

actually rather small[12]. The destruction was expected in character c_>f the oscillation_s depends st_rongly upon the val-
the form of an unlimited growth of the width of the soliton ues of the integrals of motion of the excited soliton. The ZS
i.e., its direct decay into dispersive radiatiéin should be " has, besides the Hamiltonian and momentum, two additional

noted that, in this form, the variational approach can somelltégrals of motion: the hf “number of quanta” and the If

times indirectly describe an essentially radiative procdas mass. Ina ?alagcr(]ad state, in Wh'cr; ther;c,e two mte%radls Ofl.
the case when the modulation depth is smaller than the criti'Otion are related the same way as for the unperturbed soli-

cal value, the soliton was predicted to exist stably in the fornfOn (i-€-, they are simply equalthe simulations demonstrate

of a breather i.e., with persistent internal oscillations. Later, that the oscillations are alway_s perlo_dlc or quasiperiodic. I_n

detailed simulations have confirmed that the actual behavigi" UnPalanced state, when this relation between the two in-
of the soliton is quite close to this predictiph3]. An essen- tegra_ls is broken, th_e motion becomes more complicated and
tial difference was, however, that the actual destruction mod80SSiPly also chaotic; cf9].

was not the decay into radiation, but splitting of the soliton

into two secondary ones, which was indeed accompanied by IIl. THE VARIATIONAL APPROXIMATION

a burst of radiation. The simplest variational approximation In this work, we consider the generalized Zakharov equa-

employed in Ref[8] could not predict this particular de- tions for the complex envelopgx,t) of the hf wave and for
struction mode simply because the underlying ansatz Wag\a real If fieldn(x,t). Thus '

based on a single soliton. Nevertheless, the actual value of

the critical depth of the modulation at which the destruction iU+ Uy— 2N |ul?u+2nu= 0, (1)
takes place differs by not more than 15% from the predicted
value. Many other features predicted by the variational ap- Nt — Nyx= — (U2 s )

proximation were also confirmed by the simulations, for in-

stance, the important fact that the critical modulation depttwhere the sound velocity, as well as the coupling constant in

very weakly depends upon the soliton energy and that th&q. (2), has been normalized to unity. The cubic term in Eq.

surviving soliton is a vibrating breather. (1) describes direct nonlinear self-interaction in the hf sub-
The objective of the present work is to analyze internalsystem. In plasma physics, such a term can arise Mtl®)

oscillations of the soliton in the Zakharov system by meansiue to relativistic effectgthe velocity dependence of the

of the variational approximation. Besides its obvious impor-electron masgl4]) and it then corresponds to a self-focusing

tance for applications, this problem also turns out to be quiteffect. In the analysis following below we will consider a

interesting in itself, as one must essentially modify somecoefficient\ with either sign.

elements of the variational technique in order to be able to It is easy to see that Eq¢l) and (2) have a family of

apply it to ZS. The main technical difficulty that we encoun- exact soliton solutions of the form

ter when applying the technique to the soliton in the ZS is

the divergence of a “naively defined” Lagrangian in this u(x,t)=(1—\) " Y?ysechi yx)e t 3
model. We demonstrate that one can resolve this problem by
directly using two fundamental integrals of motion of the ZS. n(x,t)=(1—\) " 1n?sech(nx), (4)

The variational approach will be described, with neces-
sary technical details, in Sec. Il. In Sec. Ill, we present anawhere is an arbitrary amplitude of the solitdgm this work,
lytical results for small internal vibrations of the soliton. In we consider only quiescent solitons, although an exact solu-
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tion for moving ones is well known tgoTo introduce the [11]. All the six free parameters in the ans&lf) and (11)
Lagrangian of the ZS, one has to define the so-called poterare real and they are all assumed to be functions of time
tial »(x,t) from only.
The next step, before proceeding to the effective Lagrang-
N=vyx. 5 ian, is to calculate the integrals of motié8) and(9) for the

ansatz(10) and(11). This yields
In terms of this potential, the Lagrangian density correspond-

ing to Egs.(1) and(2) takes the form W=A2a, C=Bb. (12

1 In the usual application of the variational approach to the
L= EI(U* U= uu) = [uy 2= Nul*+ 2 u 2+ 05— v, . description of iﬁfernal vibrations of the solittﬁﬂ?lp], first the
(6) ansatz is inserted into the Lagrangian density and then the
conservation laws are obtained among other equations gen-
The full LagrangianL is defined as the integral of the La- erated by variation of the resultant effective Lagrangian. In
grangian density all the cases, the conserved quantities are obtained exactly in
the same form that is produced directly by insertion of the
ansatz into the exact integral expressions, cf. H4%).
Moreover, it is also known that the eventual variational
equations take the same form if, from the very beginning,

It is straightforward to see that Eq4) and(2) have four ~One treats the combinations of the ansatz parameters that

integrals of motion: the momentuswhich will not be used ~ constitute the conserved quantities, e(d2), as arbitrary
in this work), the Hamiltonian constants, thus eliminating some of the variational param-

eters. This trick significantly simplifies the derivation of the
+oo final dynamical equations and will play a crucial role in the
H= f (Juy 2+ N ul* = 2vy u 2= v5 + v5,) dx present case.
o Because the Lagrangian densi) is written in terms of
the potentialv instead of the physical field, one needs to
know the functionv(x) corresponding to the ansatZl). It
is straightforward to see that direct calculation of the effec-
o tive Lagrangian would give rise to a divergence produced by
W:(ll\/;)j [ul?dx, (8)  the termv?, in the Lagrangian densit{6). A way to circum-
o vent the divergence is to use the conserved quantities in or-
der to eliminate the amplitudes andB, i.e., A>=W/a and

L=f+x£dx. (7)

—o0

(which, as a matter of fact, will not be explictly used either
the number of hf quanta

and the If mass B=c/b
fo For the derivativey,, that enters the Lagrangian, we ob-
c:(1/\/;)f ndx 9) tain the following expression from Eqé) and (11):
o [ X 22
The multiplier 14/ in these definitions will render the use v,=Cb™%b JO (2y?Ib?—1)e”Y"*"dy (13)
of the integralg8) and(9) more convenient in what follows
below.

where the overdot denotes the time derivative. It follows
from Eq. (13) that v,;—0 at x— *oo, which will now pro-
Ride for convergence of the effective Lagrangian.

Finally, the effective Lagrangian takes the form

A crucial role in the success or failure of the variational
approximation is played by the choice of the ansatz. In thi
work, we are dealing with the two-component mo¢bland
(2), in which we must allow the two components of the soli-
ton to have different widths. As it is well known, the only 1 1
analytically tractable ansatz that admits this property is based,~ 12 — _\y¢p—\Wa2k— = W(4k%a2+a 2)— —=AW?a !
on a Gaussian shape. Accordingly, we adopt the following 2 J2
ansatz for the two-component soliton:

. 1
2 +2CW(a2+b?) " Y2+1C%0b%- —C% 1, (14)
u(x,t)=Aexp(—ﬁ+i¢+ikx2 , (10 V2
wherel is a numerical coefficient given by
2
X
n(x,t)= Bexr{ 2] (11

2 + o X X P
| = \/—_f dxf dyf dz(2y?—1)(222—1)e” V" *%)
Here A andB are the amplitudes of the two componeras, T ° °
andb are their widthgnotice the difference in defining the ~ 0.1567.
widths for the two components¢ is the phase of the hf
envelope, and is the so-called chirp, which is necessary to A full system of equations for the variational parameters can
provide a balance between the different dynamical variablesnmediately be obtained by varying this Lagrangian. First,
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5 . . . . . . . . (17). In the next section, we will consider small oscillations
around the fixed point~P) of the dynamical systerfli6) and
4l ] (17).
al ] Ill. SMALL OSCILLATIONS
A FP of the dynamical system governing the vibrations of
2r ] the soliton corresponds to an unperturbed soliton. A straight-
U (a, ﬂ) forward calculation shows that the exact soluti@hand (4)

1t 1 corresponds to equal values of the integrals of mot®n
and (9). Therefore, we will be looking for a FP of the dy-
ot - namical system{16) and (17) imposing the same constraint
C=W. An elementary consideration shows that in this case
there exists a single physical FP at

-1}

1-\
e a5 t= =T W 20

V2

Notice that, in terms of the original parameterthis FP has

FIG. 1. Set of cross sections of the effective poteritiéh, ), ap=bh,, i.e., in accordance with the exact soluti(8) and
defined by Eg. (19, for different values of A (4), it predicts equal widths of both components of the un-
(A=-1,-0.5,0,0.5,0.999). The sections are takegatB,, where  perturbed soliton. It is also noteworthy that both the exact

Bo corresponds to the fixed poi(20); W=C=1. solution and the FR20) have the same existence condition
A<l1.
the variation in¢ reproduces the result thel is a constant. The next natural step is to consider small oscillations in a
Next, the variation irk yields the usual expression for the vicinity of the FP. Linearization of Eq$16) and(17) around
chirp the FP leads to the following equation for the eigenfrequency
. o of the small oscillations:
k=al/2a. (15
4 5 D572\ 4 5 5 9
iminati i ; ; Ay — = || agw"— - =0
Eliminating k by means of this relation, the equations de- 0 2(1—N) || 70 421 8V21(1-))
scribing the evolution o& andb can be finally written in the (21)
form
One can readily check that both romb%z of the biquadratic
. 1 B B equation(21) satisfy the stability conditiom?>0 at all val-
a=a ’+ EAW& ?—2Ca(a’+B*)7%% (1)  yes ofr at which the FP exists.

It is interesting to compare the eigenfrequencies of the
8IC 4 J2c small oscillations with the frequenay,=— ¢ of the unper-
_B: — — BY3(a2+ A3 ~324 g5 (17) turbed soliton, see Eq10). Within the framework of the
ow 3 W variational approach, this frequency can be obtained by vary-

o _ ing the Lagrangiari14) with respect to the parametéf with
where B=b>*. These equations are analogous to those fog|l the other parameters taken at the FP. This yields
particle motion with two degrees of freedaamand 8 and an

anisotropic mass with the components 1 3
P P wo:—zagzﬁr V2(1- MW *15—2(1—>\)2W2.
my=1, mg=8IC%9W (18) (22)
in the external potential The quantitiesw? , given by Eq.(21) and w3 given by Eq.

(22) are shown, as functions of the parametein Fig. 2.
An interesting issue is the radiative damping of the inter-

U(a,B)= ;a‘2+ i)\Wa‘l— 2C(a%+ g3~ 112 nal vibrations of the perturbed soliton. In the ZS, the soliton
V2 can emit radiation through both the hf and If channels. Al-
though we will not consider in this work the emission prob-

+ iCZW—llB—2/3_ (190  lemin detail, some comments are in order. In the If channel,

V2 the emitted waves have the acoustic dispersion law with no

gap. Therefore, shape vibrations of the soliton with any value
A full two-dimensional picture showing the shape of the of the frequency directly give rise to emission of the If
potential(19) turns out to be not very useful, and instead Fig. (acousti¢ waves. Contrary to this, it is well knowi5] that
1 shows only a set of cross sections of the potential folm perturbation of the soliton with a frequeney directly
different values of\. These cross sections are taken for con-induces emission of the hf waves onlyaf> w3, i.e., if the
stantB and are going through the fixed point of E¢k6) and  perturbation frequency is above the effective gap induced by
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FIG. 2. Squared eigenfrequencies of small-amplitude oscilla- (0,)
tions around the fixed poin®0), according to Eq(21) (the dash-
dotted and dashed lingsand the squared frequen¢22) of the 8
unperturbed solitorithe solid ling.
7.
the internal frequency, of the unperturbed soliton. Look-
ing at Fig. 2, one concludes that one of the eigenfrequencies 6f
of the perturbed soliton lies inside the hf gap, while another
is far above it. st
a
4.
IV. LARGE-AMPLITUDE OSCILLATIONS
As it was discussed in the Introduction, in many cases the 3
variational approximation furnishes quite an accurate de-
scription of strong perturbations of a soliton. In this section, 2r
we will consider finite-amplitude shape vibrations of the
soliton in ZS. The consideration will be based on numerical T
simulations of the dynamical syste¢h6) and(17). A com- 05 1 15 3+ 25 &+ a5
parison with direct simulations of the partial differential
equationg1) and(2) is deferred to another work. ,5
In Fig. 3, we display a series of plots presenting typical
dynamical trajectories of the systed6) and (17) with
A=0 and with the balanced integrals of motion, i.e., (b)

W=C. In all the cases, the initial point is taken at the FP, but

the system is given a certain initial “velocity” in the direc- FIG. 3. Set of typical dynamical trajectories of the systdé)
tion of a, viz., vo=a(t=0). Actually, this velocity repre- and(17) with A\=0 andW=C=1, for different values of the initial
sents an initial chirp of the soliton according to E§5). As  velocity vo=a(t=0): (a) vo=—0.1 and(b) v,=—0.4.

it is evident from Fig. 3, for all values of the initial velocity

vo such thave| <vei, wherev is the critical initial ve- We note that the condition determining the critical veloci-
locity at which the particle is kicked out of the potential well jites in thea and 8 directions, at which the particle escapes

(i.e., the soliton is expected to decay into radiafidd]), the  he potential well, can be obtained from the conservation of
oscillations remain quite regular: periodic or quasiperiodic. Itine Hamiltonian of Eqs(16) and (17),

is clearly seen that the frequency of the oscillations strongly
decreases with increasing amplitude. This anharmonism is a
direct consequence of the shape of the effective potential 1 ., 1 .,
(19 (see Fig. 1 H=5mea"+5mgp+U(a,p), (23
In Fig. 4, a similar series of plots is shown far=—0.3
and 0.3. In these cases, there is an additional initial pertur- _ _ .
bation besides the velocity, namely, the initial point is takenWhere the effective masses are given by @@). Evaluating
at the FP corresponding not to the actual value\ dfut to the Hamiltonian for the case when the particle barely escapes
A=0. The oscillations remain regular in this case too. (a—0,8—0 asa—x»,B3—»), we obtain the relation
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10f

g
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FIG. 4. Set of dynamical trajectories of the systeim) and(15)
for A=0.3 and\=-0.3 and differentvy, with W=C=1; (a)
A=-0.3p7=0.8; (b) A=0.3,p,=0.2. The initial point is taken as
the position corresponding to the fixed point\at 0.

1

1
Emavgrit+ §m5U§rit: —U(ag,B0), (24

wherev;; and ug;; are the critical velocities in tha and

0.8f

0.6

0.4

0.2
0.6

45

40t

ast

301

25F

201

FIG. 5. Dynamical trajectories corresponding to a perturbation
with an imbalance in the integrals of motioW=2,C=1, at
A=0, and the energy@) H=—0.5 and(b) H=—0.1.

It is also interesting to consider the oscillations for imbal-
anced integrals of motion, i.e., faNW#C. As it was dis-
cussed in Sec. lll, exact solitons always h&Ve=C. There-
fore, one may expect that, if the initial state is imbalanced,
the balance will be gradually restored through emission of
radiation. Nevertheless, anticipating that radiation losses are
weak, one may expect that the imbalanced perturbation will
stay trapped in the soliton for a long time, which makes it

B directions for the dynamical trajectory starting at the FPmeaningful to simulate Eq$16) and(17) at W+ C. A typi-

point (ag,Bo). In particular, takingi;=0 and considering,
for simplicity, the balanced case wit=C we find

—W=a,". (25)

cal set of trajectories is showifor W=2,C=1, and\=0)
in Fig. 5. In this case, one can easily see that an increase of
the initial velocity transforms the regular oscillatioffsigs.
5(a)] into seemingly irregular onefFig. 5(b)], before the
particle is kicked out of the potential well.

On the basis of these and many other runs of the simula-
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tions, we conclude that finite-amplitude vibrations of the per-around the fixed pointwhich corresponds to the unperturbed
turbed solitons remain regular if its two integrals of motion, soliton) have been found. They are always real, i.e., there is
the number of hf quanta and the If mass, are balanced, buio instability of the soliton. One eigenfrequency lies inside
that a sufficiently strong perturbation that introduces an imthe gap of the high-frequency subsystem, while another is
balance between them renders the vibrations irregular andell above the gap.
possibily chaotic. Large-amplitude oscillations have been simulated numeri-
cally. It was demonstrated that, if the perturbed soliton keeps
V. CONCLUSION balance between the values of the two fundamental integrals
) ) ) of motion (the number of high-frequency quaptand low-
In this work, we have presented a detailed analysis of th?requency magsits vibrations remain regulagperiodic or
internal vibrations of the soliton in a fundamental nonime'quasiperiodigc However, a perturbation introducing an im-

grable model, the generalized Zakharov system, which is ggjance between the two conserved quantities renders the
universal model of interaction between high- and low-yiprations irregular and possibly chaotic.

frequency waves in one dimension. The analysis is based on
the variational approach. Adaptation of the variational ap-
proach to this model is in itself a nontrivial technical prob-
lem, as it is necessary to circumvent a divergence that one B.A.M. appreciates support from the Institute for Electro-
encounters when applying the variational technique in thenagnetic Field Theory at the Chalmers University of Tech-
traditional way. Eventually, a Hamiltonian system with two nology, Gothenburg, Sweden. Support from the Swedish In-
degrees of freedom has been derived to govern the vibratiorsgitute, the TRM European project, and the Swedish Natural
of the soliton. The eigenfrequencies of the small oscillationsScience Research Council is also acknowledged.
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